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NATIONAL ADVISORY-CQMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 31.

CRIPPLING STFENGTH OF J+XIALLY LOADED RODS.*—- —

By

Fr. Xatali.s.

Let:

pk = the load at the time of crippling in kg.

TiJ = the rcodulusof elasticity in kg/cmz

F = the cross-section of the rod in cm2

t = the length of the rod in cm

J = the moment of inertia of the cross-section in cm4

i=
r

~ the radius of gyration of the cross-section
F in Cm, (J = i’F).

~
= the slenderness ratio of the rod.

i
k ~ the mean unit compressive stress at the moment

‘1? of crippling in kg/cm 2

k. = the ultimate compressive stress of the material
in kg/cm

M > 1 the ssfe-tyfactor.

P = the ailowable load in kg., (P~ = lzP).

According to Eulerrs formula, we have:

* Translated from Technisc-neBerichte, Volume 111, No. 6, pp. 207 - ‘
217.
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These fOXKUle hold go~ only for slenderness ratios ~‘“> 105.

However, a series of empirical fomulaS Have been devel~ed for I
i

; < 105. They govern, however, only a limited range Of ~ Valuesj

as for ex~ple~ the formula of Tetmajerl

k= (1)= j, for lo<+< 105ko[l-a$+b i,

and the formula of Ostenfeld:

,

k=ko
O

tl-c:’l, ”for:

both of which give too large dimensions.

Schwarz-Rankine:

If in this formula we put a = %,

< 125

Further, the formula of

so ttiak

then it covers the entire range of $ from O to CO, md gives
,

correct results fpr the extreme value of ~ = O and =, inasmuoh
.

as for cases in which

t—=
i ‘:k=k~

md when

+2 Eulezls formula, but fiozthe intermediate values of ~ it

.
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&ives too large a factor of safety; for example, for

kl = 0.5 k.

2 IThe value” – = Q has for the later consideration a spec-
i 0

ial signi,ficance, for it is the ordinate for the point of interfiec-

tion of the straight lines k = k. and the Euler:s CUrVe

(3)
.’.

it is therefore ~ impo~t~t UIIit of me~ure for the slenderness

With respect to the ch~rac~eristics k. and E of the material.

T

l—
In the mse of 75= ~, for which the Schwarz-Rank~e

o
fozmula giv~ kl = 0.5 ko, experimental investigations have deter-

mined a value of k ~ = ~ ka, for both wood and steel.
.

Table 1 centsins %he values of
&

f-different values of
/

Y~ ~, according to Schwarz-Rankine and Euler’s formulas:.

Table 1.

++ * ‘0.94:0.83: 0.64 : 0.50:.’O.?9 : 0931: ‘Chwarz-”
o l+$-L)=:::: :::-klne

E(i) : : : : : : :

k n2E i 2 . .=$l~.Z_~
~= k. (~) :(1.79):”1.00; 0.64 : :0.44. Ner------

/ . . . . . . .- . . . ,
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Table 1

J“ &.......*. = jl.75j 2.00j 2.25 j 2.50~ 2.75 ~3.O :Slender-
. . . . :ness of

. rod.

0.14:. 0.1.2:0.lo0.20: 0.17 :. .
. .. .
. .. .
. .. .

.. . ..
. .. .
, .. .

..

..

..

..
k
g

to

at

0,25: 0.20 :
. .

0.16:
.
0-13 :0.11

.

In the following; a new formula will be derived. It correspond
.
L

curve of + valid for the entirx range of ~ “sndcoinciding
%

—
J.

the beginning ,+ = 1 with the Schwarz-Rsnkine and at the end

with Eulerls curves~

of the expe~imental

length and constsat

As the formula

and approaching closely during the whole range

investigations on

cross section.

should give same

strength of rods of different

k
k=

valuss fOr

must ~pear in

the form:

positive and

~ the slenderness rationegazive

powers.

The

it only in even

formula must %e therefore
2.

_k_
k. (4)

2 ,,, , 4

For
7

very small
2

—
i

values, c’(~1
/’

becomes negligible compared

~0 b (~) . If therefore, at t-hebeginning the curve.approaches t~.s
,.

line # = 1, then
o

1
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rlecessitating b = a. If, on the other hand, for very large values
1

of ~, the ourve is to agree with that of .~ler, then the lower
.
L

powers of ~ must v~ish. Therefore, “

k
whence o = a ~-.

~E
The formula becomes therefore now

(5)
—

In order to determin~now the value of a it will be assuwd
-&2y

that the new cu~e cuts Euler’s curve at the abscissa v = n J —k-,1
1 9

where n is any number greater than 2, (n a 2).

Then

l+ all+
“$ = 6

,.
.- “l+ an+ (1 + n=]

0.,

l+&* (l+n2)=n2+~’~
o 0

. .
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If, for exsm~ie, the curve is to cut Zulerts curve at the orF.i-
1

nate ~ =

It should be noted that the new formula will give larger values

r

.
1 ~2 ~

than Euler!s for ~ between 2 ~ Srld,a. This is however un-
0

objectionable, as the disagreement will not exceed 5$.

Further, it is evident that the point of intersection of the

new curve with that of Eulerts can be moved very far off, that is,

n oan be chosen very large without essentially diminishing the vzLl-

ues of x
k= in the centrsl region of the curve &d that the latter

then will agree still better with the test results. Further, if cm
1

Gonsiders that ihe new curve whioh cuts Euler’s at Y = n
J

n’ E
1 k.

will iouch it at infinity, then the condition can be made, that also



-7 “.
..

that SJ.SOthe first intersection point is moved off

othsr words, that the new curve has three points in

Eulerts at infinity.

From this follows a simpler

peoially useful formula (for n

and for practical

up to infinity):

1-!-A

P~ =kF=koF
1-I-A

1+A+A2

.L.0 infinity; in

common with

~plioations

This formula i3 further

tains no enpirical constants

E of tha material.

distinguished by tinefact that it

but only the characteristics k.

con-

sx.d

L 1:0
/ =:0.25 : “0.50 : 0.7!5: 1.00 : 1.25 : 1.50

~dneE ‘ ● ““ ● * “ .

k
~

according to Euler . .=~~-- :
. .. .
. .. .

~ according to equation : .
-o 7(n=2) =:0.995;.-

● ✎

k . .
--—according to equation : :
ko’8(n=~) =:0.995:

-. :(1.79):‘1*O9 :
..
..
.

0.963;
..

0.955:

●

●

✌
✎

✎

0.858;
●
✎

..
0.835:

●
✎

●
✎

0.700:
..
..

0.667:

0.6-4: 0,.44
..
:
.

0.545; 0.415
..
..

0-513: 0.392
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1 kn
T
J. n~E” “* “ - ‘ “

.= :1.i5m”:2.00 : 2J25 : 2.50 : 2.75 : 3.00

k according to Euler ),.=Y~D.33! 0.25 : 0=20 : CDIS : 0~13 : OJ1lk~ . . . . . .. . . . . .
. . . . . .. . . . . .
. . .

# acoording to equation
. .

0 7(n=2)
= ;0.319; 0.250; 0.2CO; 0.163; 0.135; 0.115

. . . . .. .. . . .

. . .
k @

. . .. . ? . .
ng to equation :

.
.

~ acc:r(n .m)
. . .

= :0.303; Q-238; 0.190; 0.152; 0.130j 0.110

For different values of

there are grouped in Table 2 the values of k ..g

Fig. 1 shows the curves of # plotted from formula (5) and
G

from these of Euler and Schwarz-R&nkine. in ordez to verify the nsw

formula a series of pine rods, 4 x 4 om.2 ~d of different lengths .

was tested.

The material.selected wss as unifom as possi31e. Taking

F’= 16 ozn?, J = 21.3 om.4, i = 1.15 cm. sad,?3= 130,000 k~om?,

the results of tests were computed in terms of $
1

.&Q-~d&
na E k.

and plotted in Fig. 1.
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Ta”ole3.

0’:
,

J:: ;
16 .
20”;
29 .,.
39 ..

(~. :) :
.,. .

63.5. :
71.5 :
(74) :
80- ●

87.5 ;
(98.5) :

525
523
524
508
479
476
43Q
zA32
{350)
3G9
244
218
{::;)

145
(125)

.
..
..
..
..
..
●
☛

✎
✎

..

..

.,.

..
:
..
..
..

.0.’000
0.152
0.204
0.524
0.405
0.587
0.7%3
o*932
(:*::)
-.
1.29
1.45
{;-g)

1:78
(2.00)

.. 1.000

.. ().996
: ~ng97
.. 0.’368
.. 0.913
●. 0.906
.. 0.820
.. 0.6’S0
.. (g● :::)
*
●

.
● 0:465
.. 0 ● 418
.. (:● ;;:)
.
●

.. 0:2?6

.. (0.238)

In Table 3 there are included further (in braokets) the calcu+

lated results for
:K=

1.0’,1.5 and 2.0:

As can be seen from Fig. 1, the test results ~ree well with tt”

cnnve from formula (8). That the test results do not give an entire

ly smooth ourve, is not surprising at all, aa in such compression

tests slight differences in aatsrial and its uniformity exert a con-

siderable influence.

For a material of unknown pru~erties it is suffici.ent-tomake

two tests oily, in order to Ctetenninethe cha,raoteristics k. and E:

one compression test of a short rod giving the ultimate compression

strength k. and one bending test of a ho~izontd rod, freely sup-

ported at the ends and loaded in the

from the known load ~ in kg. and the

center, giving E = & ~

observed deflection f in on.



The results of another similar series of tests are given in

Table 4. They refer to hollow square sedtiwed rods and are calw-

lated for k. = 525 kg/em.=, E = 130,000 kg/om~ , F = 7.94 CZ;2,

J = 15.9 cm.4, and i = 1.41 om. Their dimensions and the ourve Gf

the test zesults ia comparison to the curve given in fmEula (8) .

are shoti in Fig. 2.

Table 4.

. 525 : 0.000 : 1.000.
1: : 519 : 0.264 : 0.989

.
(;.$ :

0.628 :
(%!?) : (:.:::) :

0.855
{:.;;;):

(74j ~ (g;) : (1:50) :
?’7

(0:392)4
●

. 1.540 .. . 0.452

From tests of drawn seamless steel tubes$ manufactured accord-

ing to the standards of the Army Air Service Inspection (Iriflz)*

?!zible5 and Fig. 3 were established, showing that formula (8) holds

SlSCIfor other materials. In these tests specimens ZQ mm. in di~-

eter and of vaxying length were used; the wall thickness varie& be-

tweev 0.79 and 1.18 mm. The WS21 thickness of individual tubes was

not quite uniform, varying, for example, from 1.02 to 1,18 MM. Thi~

shwld explain the irregularities of’the curve in Fig. 3.

* ‘Mflz’l means probably, llInspektionder Flugzeugtruppen.~
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2 . k . ~
/-

k. :
● . w-Y .

1 kg/qcm. : i , na E .. . k.
—-

11.20 : 5225 : O*:F2 .. 1 GC5
13.15 : 5~~2 : 07213 .. 0.998
15*1O : 4786 : 0=245 .. 0.920
1s.03 : 5203 : 0.2’32 .. l*CO1
20.96 : 4930 : 0.340 .. 0J948
24.86 : 4720 : 0.403 .. 0.908
27.?9 : 4918 : 0.433 .. 0,546
32.66 : 4984 : 0.530 .. 0’S57
37.54 : 4500 : 0.EQ8 .. 0.865
42.42 : 4841 : 0.687 ., 0 ● 930
51.80 : ~~~ : 0.8# .. C.932
61.56 : 354!~ :
(;;8;;) :

0.958
(;,34~4) : (;.:::) :

0 ● 682
(~.~;~j

. . ●

81:08 ;
.

2698 ~ 1:314 .. 0:5L3
90.83 : 2C22 :
(92.55) :

1-4’73
(:.5&) :

O*Z33
(XX32) : (:● ;;:;

100.6 . 1655 : * .. . ● W

5225 + 5192The value k. = ——— 2

the mean value obtained frou the

tubes. The value E = 2,000,000

= approximately 5200 kg/cii~ is

compression test of the two sho~te.

kg/cm.2 of the modulus of elastic

ity is the average of the benaing tests of twG tubes, which gave

2,041,~C ~~d 2,008,370 kg/cm.z ~espectively (average 2,025,000)

and of two compression tests giving 1,990,000 and 1,370,000 kg/crfi.2

respectiveljj(average = 1,980,000). The calculations were also

based On F = 0.911 CM.2, J = 0.959 cm.4, i =

so that $ = 61.70 and
+6’* ~z’”025 m.’

In the”foregoing calculations, besides k. and E, the value

of F, J and t are assumed to be known and fxcxnthem k and Pk= UP

are calculated; frequently however, k. and E also ?k s mP and 2



-12-

are given and F and J are to be calculated.

In order to simplify such calculations, Tables 6 to 8 can be

Uaa$.

Table 6.

Solid Square (3ross-Sec:~on Pine.
.

= h2 om.~;J’= %@= G&; i= h

a

-3 F &-
=—

12 12 12 3.47 ‘“

.; k. =
I

525 -# ; E = lZQOQOX
, cm2

l--h 4

1 + 4’09 $ ++2”’ ‘
mP = 525 F kg.

“t21 + 4*O9 $ (@ -f-[4=~9 $ (+)21s

h:F: J : J: i : 2 =
.. . :F::

om:cma: cm4 : cma: cm : 0 :20:40:60.:80 : 100 : 12C

. ‘. . . .

. :. . . . .mP =

. . . . ., . . . . . m

. . . . .
2; 4: 1.33~0.33:C).577: 2.10: 1.81: 0.91: 0.45:.0;263: 0.171:0.11
3: 9: 6.75:0.75:0.865: 4.72! 4.55: 3,38: 2.06: 1.27 : 0.846:0.5$
4: 16: 21.3 :1.33:1,15 : 8.40: 8.28: 7.23: 5.35: 3.65 : 2.53 :1=82
5: 25: 52.1 :2.08:1.44 :i3.1 :13.0 :12.2 :10.1 : 7.73 : 5-70 :4-2<
6: 36:108 :3.CO:1+73 :18.9 :18.9 :18.2 :16.3 :13.4 :10.6 :8*2C
7: 49:200 :4.G8:2.C2 :25.7 :25.7 :25.2 :23;5 :20.6 :17.1 :13,.$
8: 64:340 :5.33:A.51 :35.6 :33.6 :33s2 :32..7:28.9 :2502 :21.2
9: 81:547 :6.I’5:2.GO:42.5 :42.5 :42.3 :40.9 :38.4 :34.5 :30.2
10:100:833 :8.43:2.88 :52.5 :52.4 :52.1 :51.1 :48.8 :45.2 :40*t
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Solid Sauare Cro~s-Section Pine.——— .——

F =h2 ~2;J=h~m~;L ha‘---oL12; i=— — -

12 1? 12 J+= 3;47””.

~- h-=

UIP= 525 F

k. = 525 *; E ‘ lX!,oc)c)*

1 + 4.09 $ &2()

$(&y (f&j)? 2
1 + 4.09 + [ 4.09 $

h:F:J :~j i : ‘ L =. .. . ~F = :
cm:cm2: cm4: Cmz: am :140 :160 :180 :20C: 220: 240: 2613:2~0

. . . . .. . . . . mP=. . . .... .. . . . 1000

..... .. -.. ,.,. ......
2: 4:l,33;0.33:0.577;O.087:0.067:0.053:0.043:0.035:0.030:0.Q25:0.O22
3: 9:6.75:0.75:0.865:C.444:0.338:O-266:0.21.6:0.180:0.151:0.128:O.lll
4: 16:21-3:1+33:1.15.:1.37 :1.06 :0.836:0.680:0.563:0.473:0,Q4:0.34$
5: 25:Q2.1:2.08:1.44 :3.22 :2.53 :2;02’-:1.64 :2.36 :1.15 :0.980:0.842
6: 35: .108:3.00:1.73:6..41:5.08 :4.12 :3.38 :2.81 :2.37 :2.02 :1.76
7: 43: i300:4t08:2.02:11.2 :9,02 :7.41 :6.10 :5.13 :4.35 :3.72 :3.23
8: 64: 340:5.33:2.31 :17.6 :14.6 :12.2.:10.1 :8.54 :7.31 :6.2’7:5.45
9: 81: 547:6.75:2.60 :25.8 :21.9 :18.5 :15,6.:13.3 :11..5:9,89 :8.65

10:100: 833:8.43:2.88 :35.7 :30.9 :26,6 :22.8 :19.6 :17.0 :14.8 :13.0

—
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Table 7.

Hollow Sa-uareCross*ection Pinq.

k. = 525 kg/cm2; E = 1343,000kg/ cm2

—

. . . . . . mP .. . . . . .

. . . . . 1000. . . . . .

. . . . .
4:~.~:8.16~~~.2:l_98jl.41j~.28:4.26:3.96:3.26:2-4~:l.8~:~.32:1.51
5:3.6:12.0:38.2:3.17:1.78:6.30:5.2’9:6.09:5.48:4.58:3.66:2.86:2.24
6:4.4:16.6:76.8:4.62;2.15:8.71:8.70:8.56:8.07:7.23:G.15:5.07:4.14
7:5,2:22.0: 141:6.42:2.54:11.5:11.5:11.4:11.1:10.3:9.25:8.04:6.22
8:6.0:28.0: 233:8.34:2.89:14.7:14.7:14.6:14.4:13.7:12.6:11.4:1O-C
9:6.8:34.8: 368:K).6:3.26:18.3:18.~:18.2:18.0:17.5:16,5:15;2:13.7

10:7.6:42.2: 455:13.2:3.64:22.2:22.2:22.1:21.9:21.5:20.6:19=5:1S-0”
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Table 7 (Contd.)

Hollow Squ_areCross-Section Pine..——

~=m-
k. = 525 kg/Cm2; E = 130,000 kg/cm2

k-f-i*

H:h:F :J:~’:
.F:l t =

. . .. . . . :—.

Cm:cnl: cm’: cm’: cm=:~ : l&) : 180 : 200 : 220 : 240 : 2Ea :280

. . . .. . . .. . . .

. . . .. . .. . . .

rnP
1000 =

● ✎ ✎ ✎ ✎ ✎

4:2.8i8,16:16.2:I.98;l.Q: 0.791:0.631:0.514:0.~4:0.3@:0. ~9:O.2~
5:3.6:12.0:38.2:3.17:1.78:1.80 :1.44 :1.18 :0.989:0.834:0.715:0.61:
6:4.4:16.6:76.8:4,52:2.15:3.39 :2.79 :2.32 :1.95
7:5.2:22.():l~:fj.42:2.54:5.74 :4.84 :4.08 :3.47
8:6.0:28.O: 23~:8.34:2.89:8.65 :7.45 :6.40 :5.50
9:5.8:34.8: 368:~().6:3,26:12.2:1O.7 :9.43 :8.23

10:7.6:42.2: 455:13,2:3.64:16.4 :14.7 :13.2 :11.7

In Table 8, only one value of wall.thickness

:1.66 :1.42 :1.23
:2.97 :2.56 :2.24
:4.’76:4.14 :3.63
:7.21 :6.33 :5.59
:10.3 :9.27 :8.13

was taken for eacl

tube disueter. As F and J axe nearly proportional to 5 for thin

walled tubes, therefore the strength of the tubes is practically

proportional to ths thickness of the wall and csn be easily estimat

ed for other thicknesses from the values of the table.
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Table 8.

Seamless Steel Tubes, A~~7 Air Service InSped’iOn Specification.

F ; (D2=— -d’) =n6(D -6).W2; J = 54 (D4 - d4)CK4;

e J
J D= + d2 ~ti—=
F 16 ‘ ;i=~=’c~; ‘

d
f

t 1
1 s k. = 5220 kg/cm2; E = 2,000,020 kg/cm2I I
I 1

k+ ~ (+’1 ‘.2*53J 100mP = 5200 F “ kg.

1 +2.63$(+2 +[2.63F
\ ) T (A)2J 2

“-D:d:5:F:J:$: -i: z’=. . . . .~. .. . . . . . .
. .

cm :Cii: cm ~an2~cm~~cm2~cm :0.25.50: 75 . 10G . 125
. . . . . . . .

—
. . . . . . . ml?. . . , . . .

1000 =. . . . . . .. . . . ..
. . ., “. . . ..

2.0:1.8;041 ~0.597:0.270:0.453;0.673;3.10:2~85:1.67:0.889:Os523:0.33~
2.5:2.3:0.1 :0,754:0.544:0.723:0.850:3.92:3.’76:2.74:1.55:1.02 :0-6’73
3.0:2.8:0.1 :0+911:0.959:1.050:1.025:4*74:4953:3964:2*~ ‘1*7C ‘1*15
3.5:3.3:0.1 :1.068:1.545:1.444:1.203:5.55:5.49:4.83:3.67 :2.55 :IL7Q
4=0:3.8:0.1 :1.225:2.331:1*~ :1.38 :6-37:6.32:5.84:4.75 :3.54 :2.57
4.”5:4.2:0.15:2.050:4.854:2.37 :1.54 ;10.6:10.6:10.0:8-~ :5-73 :5.C8

. . . . . .. . . . . . z =

. . . . . . .. . . . . .

. . . . . . .. . . . . .

. . . . ;0 :150 :175 :-2C0 : 225.: 250. . . .

..

..
●
✎

5*O:
5.5:
6.0:
7.0:
6.0:
5.0:
10.0:

..

..

..
4.7:0.15
5.2:0.15
5,6:0.2
6.6:0.2
7.6:0.2
8.6:0.2
9.6:3-2-

..

..

.

..

.

..

.

.

.

. .. .

. ..

. .

2.286;5.726:2.95
2.521:9.027:3.58
3.644:15.34:4.20
4.273:24.72:5.79
4.~SOl:37.30:7.m
5.529:53.55:9,68
61158:73795712;0

.

.

.

;1.72
:1.89
:2.05
:2.41
:2.76
:3.11
:3.47

..

. mP =.

. 1300
;11.9:5.10:3.97:3.17 :2.54 :2;08
:13.1:6.47:5.13:4.13 :3.36 :2.76
:18.9:10.4:84=:6sm~ :5.55 :4.63
:22.2:14.7:12.3:10.2 :8.54 :7.16
:25.5:19.0:15.5:14.1 :12.1 :10.3
:28.7:23.3:20.9:18.4 :1S.0 :14.0
:32.0:27.5:25.2:22.7,:29.2 :17.9
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Seamless Steel Tubes. Army Air Service Inspec~ion@edification.

F= ~(D2-Ct2) =q6(D-5)Cm2; J=&(D4-d4}on14

e- -=D2-d2.~~;i=J + J“’FT2ml:
& F 16

,d
I t k. = 5200 @/ Cm2; E = 2,000,000 kg/oma .
i 1 . .

D :d:5:F:J: ~:’i: 1 =
. . . .F::.. . . .

Cni‘cm: cm:crG2:cm4: oll?:om : 150 : 175 “:200 : 225 : 2~

. . . . .
‘.

. .
. . . . . mP
. . . . . :.,..., 1000= .-. .. . . . . .
. . . . . . .

2.0~1.8;0.l ;0.597:0.270:0.453;0.673;0.237:0,174:0.134: :
2.5:2.3:0.1 :0.754:0.544:0.723:0,850:0.473:0.348:0.268:
3.0:2.8:0.1 :0.911:0.959:1.050:1.025:0.828:0.609:0.469:0.372:0.301
3.5:3.3:0.1 :1.068:1.545:1.444:1.203:1.29 :0.972:0.751:0.596:0.485
4.0:3.8:0.1 :1,225:2.331:1.80 :1.38 :1.89 :1,43 :2.12 :0.894:0.725T
4.5:4.2:0.15:2.050:4,854:2,37 :1.54 :3.78 :2.94 :2.3Q :1.85 :1.51

. . . . . . .. . . . . . . 2 =. . . . . .. . . . . .

. . . . . .. . . . : 275 : 300 : 325 : 350 : 375. . . . . . .. . ● . . ● .,.
. . . . . .. . . . . . . mP

. . . . . . .. . . . . . . 1000 =

. . . . . . .
5,0:4.7:0.15;2.286:6.726;2.95 ;1.72 ;1.73 :1.,46:1.24:1.08 :0.945
5.5:5.2:0.15:2.521:0.027:3.58 :1.89 :2.30 :2..94‘1s67 :1.44 :1.26
S-0:5-6:0.2 :3.644:15.34:4.20 :2.05 :3.87 :3.29 :2.82 :2.43 :2.13
‘7.0:6.6:0.2 :4.273:24.72:5.79 :2.41 :6.06 :5=18 :4.47 :3.89 :3s40
6.0:7.6:0.2 :4.901:37.30:7.EC “S2~76:8.S2 :7,53 :6.60 :5.74 :5.08
9.0:~.6:0.2 :“5.529:53.55:S.68:3.11 :12.1 :i@.5 :9.20 :8.06 :7.21

J.O.0:9,6:0.2:6.158:73.95:12.0 :3.47 :15.7 :13.9 :22.2 :10.8 :9.65
-
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Table S (Contd.]

Sesrdesa Steel Tubes, Arm Air Service Inspection Specification.

~(D2-d2)=n6 (D-6 )C?22; ~=r=4. & (D4 - d’)cm’;

e &
d

b !
1 I
# t
1

‘mP=

J P+d2cm, ;iQ—=
F 16 4

k. = 5200 kg/Clll~; E =

TD +d? cm:

2,000,000 k~ C@

2
I.+2.63 $

5200 F kg.

1 +2*53 : (&y + [2.63: (A) 2]2 “
,

D: d:&: F : J :J : i : 1 =
-F : :. . . .: . . .

.
cm:cm:cm:cmz:cm~ ‘cma:cm:.275:30G :325 :3=W:3~5

. . . . . . .. . . . . . .

. . . . . . .. . . . . . .

. . . . . ● ✎

2.O;l.8j0,1 j0.597;0.270;0.453;0.673:
.2.5:2.3:0.1 :0.754:0.544:0.723:0.S50:

* 3,0:2.8:0.1 :0.911:0.959:1.050:1.025:
3.5:3.3:0.1 :1.068:1.545:1.444:1.203:0
4.0:3.8:0.1 “:1.225:2.331:1.90:1.3S :0
4.5:4.2:0.15:2.050:4.854:2.37 :2.54

. . . . .’ .
● . . . . .
. . , . . .
● . . ● . .

,. .

:1
..
.
Q—

: ; i i i
. . . . .. . . . .
. . . . .. . . . .
. . . . .. . . . .
. . . . .

I
5.0;4.7:0.15;2.286:6.725;2.95
5;5:5.2:0.15:2.521:9.027:3.58
3-G:5.6:0.2
7>0:6.6:0.2
8,0:7.6:0.2

L
S..0:8.6:0.2
10.0:9.6:0.2

-

:3,644:%5.34:4.20
:4.273:24.72:5.79
:4.301:37.30:7*60
:5.529:55.55:9*68
:6.158:73.95:12-O

..

..

..

.

ix;i’2
:1.89
:2.05
:2.41
:2.76
:3.11
:3.47

. . . .. . . .

. . .. . , :
. . . .

M) G:O.339; ; :
605:0.N28:0.L=2:0.375:0.326
25 :1.G6 :0.S04:0.778:0.682

.
.. mP.. lGOO =.,“-.

:0.850:0.736:9.658:0s590:0.534
:1.11
:1,88
:3.00
:4,47
:6.36
:8.56

:0.S83:0.E%2:0.791:0.71-2
:1.49”:1.34 :1.21

:2.15 :1.94
:3.22 :2.91
:4.60 :4.15
:G.30 :5.68

.
,
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GRAPHICAL DETERMINATION OF CRI~LIfiG LOA3. “

,

In formula mP = kl?= koF&, k. end F are known and

yends on $ and & only. Durin~ the derivation of formula
,—

k de-
~
(3) it

is an important unit of messurenent ,for the slenderness of the rod

and makes it possible to read off the values of ~ for all values
t o
- and for all materials from a single curve.of .&,,

If the cri~lin~ load for ay value of ~ is to be determined:

it is necessary first of all to multiply $ by
r

kn
Along the

m2E- .
ordinate AB corresponding to the abscissa 1.0 a scale for

i

is provided and from the origin O radial lines are drawn for dif-

ferent values of ‘~ . For inqtmce, tileline for ~ = 250 (wood)
o 0

agrees with the experiment& results in ‘i’@le3, in which

= 130.000 = ~48
& 525 = spproximately 250.

Table 9.
.

E:—=
k. : 200 : 250 : m : 350 : 385 ~’400 :450

“ (Holz) “ - “ “(stall)“ -

11
=

Y : 44.4
1: : 49.7 ~ 54.6 : 58.9 : 61.7 : 62.S ‘66.8. . .. .. .. . . .

2If, for e~ple, ~ = 39 = ~“ and if the line ODE is dram

then ~=cx~, where c is a constant. The radial line (Xl

r

kfi
must therefore have a slope corresponding to o =. me

E“
The inter

section point F of line OD and the ordin-ate

1
$ for which ~

r

kn
ue of =1; i.e., ~=

~2 E

AB gives the val.-

Z =
r

-&
Z- k.



t

●

1

- 2’3-

EFor. —
lso

= 250, therefore –~ = 49.7.

For other & the values are given in Table 9,
.

the radi&l lines for the charaoteristios of different

from which

materiais oan

be easily dram-nin Fig, 4,A_

If the value of
L

/
J%_ = ~ is once determined by means of

T ~2 E

a proper radial line for a value of ! y ~ the line DGH gives
1

immediately the value ~, k— = .81 in the ex-
0 = ‘0= ‘nst=ce ko

I ample, this value is then to be inserted in the equ’ation

mP = k. F~ = .81 koF.
k.

For another value of
t
T

.74 >~, - corresponding to

r
~ ~ = 1*5 the line JKLM should be drawn, giving $ = ~ =

.392, i.e. mP = ,392 koF.

When the load mP, instead of the cross section of the rod,

is known, the process must be iepeated in order to detemnine the

cross sectional.dimensions.

THE ELASTIC CURVE &lD THE LATERAL DEFLECTION OF THE ROD.

The differential equation of the elastic line,. (Fig. 5), frcm

which Eulerfs formula is derived is:

&L-= .J_=u _
dx2 EJ EJy’

tihere P is any 10sd at all.

This equation is satisfied by

(9)

--= Bsinwx+Ccoswx,J
.

(lo)



.

,

.

in which B, C and w -e constants and are still tc be determined,

x’ O gives y = 0, therefore, C = 0. As, however, y must a’sc

= :Q?.$ozx = ~“$ therefgre B sin wz = O, hence w I= m ,—

2TT~3TT ...... The values 2 n, 3 ~, eto., ocrrespond to a r~

ient into several waves

therefore are not to be

Hence, we have:

w

by fourfold, ninefo3d, ........ loads, -d

considexed.

=n-andy=Bsinvr~—
L i+

The elastic curve is therefore a sine curve.

As further, for x = ~, the deflection y = a,

On the other hand, according to equation (9)

&=” P n’

dx’ ‘—=- T2Y”
EJ y

Then there follows:

TT2EJpk=—
L2

(11)

then B = a,

(12)

(13)

In other words, if a deflection of the rod taked~lace at all

&>() then it cm occur only under the effect of a definite

~Oad pk. ““

However, the maximum deflection a for x = ~ c~ot ~e cal&..

lated from equation (12) as the equation a = a sin ~ ~ = a sin ~
2

can be satisfied for any value of a. Hence, it follows first,.,

that in case of P c Pk there is no

that for a definite load Pk = ‘~,

deflection at all; second,

the equilibrium of the inner
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and outer forces is present for any value of a, and third, that

in case of P>Pk the defleetion a will centinue to izzcrease

until the rod will break and a = m .

This ie, however, not to be taken literslly, for the deflec.-

ticm of a rociin proportion to its length cannot excead certdn

practical limits. The conclusions of this investigateion ~piy

therefore to coqparatively small deflections of th~ rod and tc rods

which ori.ginaly were perfectly straight, symmetrica,land of uni-

fOrm material. With these reservations, the fo~l~, and the con-

clusions drawn therefrom are unobjectionable.

That the deflection, accoflng to Euler, for the load

n2 EJpk = ~~ csn ass.umeany value, seems astonishing at first, but

is es.sily explained by the following consideration.

If, at a certain definite deflection a, there is an equilib-

rium between the outer force~ and the inner bending moments, -d

if the defle~ion is artificially increased to n a-,then all tine

inner stresses and simult~eously the outer bending moments for

every cross-section will be inore~ed n times. The rod is there-

fore in an indifferent equilibrium. If Pk is somewhat diminished,

the rod will come hack to its

incre~ed, the original small

largez until the rti breaks.

In

izontal
1-

axis in

contrast to the above

original form, if Pk be slightly

deflection will centinue to grow

is the state of equilibrium of a hoz-

rod supgorted at the ends and loaded transversslly to the

which case there is a definite deflection for every load.
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The difference in the two oases is due to the fact that, in the

transversally loaded rod the ben~ing moments =8 i~d-me~dent of ~~~

deflections while in the axially loadsd rods they are proporiional

to %he deflection.

The conclusion drawn from the discussion of Ltilerrsformula

that an axially loaded rod should not deflect any measurable anourAt

and that no gradual increase in deflection should correspond to the

gradually increasing load, is, however, not generd.~y confi~ed by

experiments. For instance, Fig. 6 shows the lateral deflection in

relation to the axial load fOr two steel tubes.

No. I, 304 cm. 10ng,

II11, 294 cm. long,

It follows frOm

65 mm. dimeter and 1.46 mm. wall thickness.

80.1 mm. diameter snd 1,98 mm. wall thiokness.

the curves that, although the deflections grow

rapidly with the 10ad, the crippling of the rod does not occur very

suddenly.

This contradiction might be attrikted to the fact that the

modulus of elasticity E doe~o’t remain quite constant aS the

stress increases or that either the oross-sections of the rti are

not perfectly symmetrioal or the material is nti uniform, or also,

ths3 the rti was not perfeotly straight before the load was applied.

Finally, it is not quite oorrect to assume that for considerable

deflections the arc eleme t ds of the rod is equal to dx, us-

. bb instead of d ~
‘W dx

in the derivation of Euleris fomnula.

The last point seem, however, unessential as the praotically
-
v admissible deflection of the rod is slight. Also the variation of
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73 is inconsiderable. On the contrary, some bends in the rod 3e-

fore

illa

only

the test or nonuniforaities of the wall thic-kness(for exsmple,

tube) or of the material, are of essential importance.

It i= evident that even a perfectly strai~ht-,-rtiwill bresk

at a certain definite deflection a. This deflection for large

t
values of ~,

1
at whioh the c~lpressive stz’ess is negligible in cmn-

psxison with the bending stress can be calculated in the following

manner:

Pk = -w a Pk = k. $, where e is the distance of the out-

most fiber from the centerline of the cross-section.

(14)

2For small values of ~, besides of the bending stress, the

compressive stress must be considered. As both stresses tzikento-

gether should not exceed ko, the bending stress alone equals

k. - k.

In Fig. 1, ~
k.

is represented by the distance of the ~ val--
.

k. -k 0
ue frcm the x - axis and

k
by the distance from the line

for # = 1.
0

Therefore,

pk=k Fa.ndapk=(ko -k) $

a =ko-k J = ka -k i2
k= k— e

(15)

This equation give6 the s arne values of a as equation [14)

ifj as for long rods, k in the numerator can be neglected and
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Pk”is taken e~al to k F = ~.

Subtracting in equation a =
k_ l\<

Y
tinevslue of

k )~
frcm equation (8).

a=

-1 )
.

(17)

Equations (15) and (17) lead further to the fOll~ing @Port-

ant consideration.
t

Ii, for a certain value of ~ the ratio ~
o

is deter~ined according to equation (8) or Fig. 4, zhen the greates+

admissible deflection i’a is proportional to ~ . Table 10 gives
.2

1
~ for some solid and thin walled hollow sections.

-----

@

F;
..

ITd44 .& ..
-e. -d-d2 16 = Q = 0.125 ~

16
.

+; 64 Trd2 . 28----- ...

bd?
+

=dj .: .d2;2=Q=
12bd 12 6 0.167 d..

hFd4



In an airplane lateral deflecticn of rods can he prcduced by

vibration or other exte-rnalcauses, -d Table 10 shows that the

hollow sectimed axially-losded reds can be allowed to deflect

twice as zuch as the solid sectioned rods. T-hesquare section is

4/3 tiknesmore advantageous than the circular one, due to the lar-

ger crOss-sectional area.

NOW, examining the case of an eccentric load, considering at

the same time, instead of a straight rod, a rod having ~ initi~

behd b, before the load is applied, (See Fig. 7). The curve of

the initial bend is unessential. To simplify the calculations, it

can therefore be assumed that the curve of the initial bend is simi-

lar to the elastic cuzve of the rod deflected undex the 10ad. If

tiien b denotes the initial bend and a the additional elsstic

deflection,

Y~=-Q--- %Yy;dyl=— d’y; @y= = & day.
a+b a+b a+b

AS further ‘
.

where P is any load, then

a2x =____a+b P

d X2
— Y“

a. EJ

This equation is satisfied 3Y

Y= (a+ti)sinn~

(13)

(19)

●

✍

-
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.

k= ‘(a+ b)~$sinn~=-n$ y
d X2

Yx = b sinn ~ Q% =-b+: x

z d.Xa
Sinm-=-fiy.

2 22 1

(19a)

(19b)

With ref~mht% to eqpation (18) we have therefore:

a+ b.&_n2. ~._ PZ2.
a EJ t2’a+tl TT2EJ

The elastic defIection however is not a+b

and it depends upon b S@ P.

a= tlP22 3=
TT2EJ-PLa TT2EJ

Pt2 ‘1

but a only ~

(20)

In the o~e of an eccentric”dly loaded rod, the deflection a

depends therefore, upon P. For P =

?
@E J=pk=~a=o.

@E J = pk is Euler’s crippling12

F =-y ;Pk, it will be found that

Y

0, a=o and for

load. Taking therefore

(21)al=b -
Y -1

7
For different values of y the values of ~ ~ are giv-

en in Table 11.
Table 11.

v :1s0: 0:9:0.8:0.7 : 0-6 : 0.5 :0.4 :0.3 :0.2 :0.1 :0.0 :. . .
=::::

. . . . . .

b
,Cv, 9.0:4.0:2.33 ; 1,5 : 1.0 ;04667’10.428;0.350:0.111:0.000
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—

The eccentricity b cannot be easily meaaured as it is com-

posed not only of the real ecc.entrlci-tyof the l~ad, but also of the

lack of unifomity of the wall thickness and ths fiaterial.-If, hoJY-

ever, this seeming (total effective) eccentricity be calculated for

one of the experimental results”in Fig. 6 (curve 1 gives 3 = 1,1 cm.

and curve 11 as 1.27 cm.) and then for the various loads the corres-

ponding deflections a figured out (in Fig. 6 the various osses axe ..“

marked bf circles) it will ‘oeseen that the calculations agree sur-.-

prisingly well with the test results. This proves.the statement that,

the regular increase of deflection with the load is due mainly to

lack of symmetr-yantiuniformity Of the Nd, both in dimensions and

material, and that the effe~t am be reproduced by the assumption

of an eocentric load.

DETERMINANTION OF ADMISSIBLE LOAD WITH REGARD TO ECCENTRICITY,

1. For relatively slender rods, in whioh the ruean compressive

~~ress k is negligible in comparison with the bending stress

k. - k, the following relations are approximately true:

P(a+b)=ko$

a= h 2.
Pa

b and with equation (20)

‘~~.b. bp~z

Pe n2EJ-Pz2

P(ko$Z2+bn2EJ)=ko~ IT2EJ

(23)

(24)
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2. For stouter rods, where the mean compressive stress should

‘leconsidered:

P(a+b)=(ko-k)$ (25)

%-osti.tut ing k = ~ and from the equatio~ (20)

.
a= bP22 ~Ld it will Se found:

n2EJ-Pz2

P>
7T2EJ=k~_~J

o
n2EJ-Pt2 e F;

P2 -P (’~+koF + ‘Ei~b?=-
~FTT2E J—

[1 22

(*-) /( 1+=+ ~2-4kOFt2]) (26)
n2E J J TT2EJ: “

two roots and if applied to the steel tu.’seThis formula has

No. 11 in Fig. 6, where z = 294 cm.; F = 4.9 CU2; J = 37.3 CU4;

k. = 5200 kg/cm=; E = 2,000,000 kg/cm2 and b = 1.27 on., the

~uckling load will be found either Pl = 33,275 kg.-,and the coxres-

pcnding elastic deflection according to equation (20)

al = - 1,715 cm. or P2 + 6,635 kg. and a2 = 4.14 Cal.‘.

PI and al do not practically come into questiorias the deflec-

tion al is in a direction @posing the initial bend b and k
b

vvald be greater

zoot in equation

than

(26)

●

k.. Therefore, only the negative 6 ign of the

should be used.
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Equation (26) can be used in order to determine the buckling

10ad P according to the idea of Mueller-Breslaux assuming eccen-

tricity of the rod.. The additional deflection a corresponding -

to the load P is given by equation (20); the total deflection is

therefore:

a+b=b P 12 +b =b n2EJ
n2EJ-P12 TT2EJ-p Z2

(27)

snd the bending stress is obtained from equation (25) to

k -ko= P(a+b)e
J

(28)

.
The foxegoing calculationbeconiesvery clear when the moments

Ma and Mi of the outer

the deflection a, fOr

Fig. 7.

and inner forces are dram in relation to

exsz@e, for the weakest seotion, as in

Ma = P(a+b]

d2y dzyl E J

Mi=-—-—
dx2 dx2 “

in which, according to equations (2.9a)and (19b)

and

(29)

(30)

(31)

.
The moments Ma and ~ are represented in Fig@ 7 by full

lines. Their point of intersection corresponds to a deflection a

. at which the inner and the outer fozces are in equilibrium. A—

smaller load PI e P would have a corresponding moment line Mai
———.-
*Mueller (Breslau),Die neueren Methoden der Festigkeitlehme. -
Published by A, Kroener, Leipzig, 1913, Chap. VI, p.3@.
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ciottedand a smaller a similarly for Pa = P, there will he a

line Ma= and a greater, a and a + b. lf p increases ~o ~~.~k

that the line Ma beccmes parallel to Mi, a will be equal to

& and P ‘pk=n2;2J . If P is increased still further, then

the line Ma4 will interseot the line ~ produced so that a

becomes negative. This value of -a Corresponds to the unused

root of equation (26).

The foregoihg ought to prove that although the bend a + b,

in the case of an eocentrically loaded rod, grows rapidly with the

inorease of the lo~, the bre~ does not ocour suddenly. On tine

other hand, it s6ems possible to eliminate in a ccapression test,

by means of a proper arrangement, the always present slight eccen-

tricity in which all the ununiformities of wall thickness and ma-

terial are included. Then for a definite load (namely,Euler!s

crippling ~o~ pk = *S there must be an equilibrium for any

deflection. This means that the ourves I and 11, Fig. 6, should be

vertiml lines P, having the same value for any defleotian.

This apparatus may, for example, consist of two spherical com-

pression blooks, with respeot to which the ends of the tube, pro-

tected by end plates, may be laterally displaced by meens of ad-

justing screws until the crippzing load reaches a maximum.

The author had such a testing device made. The tubes to be

tested are dosed on both ends by plane pressure plates, and in the

mathine are placed two compression blocks whose knife edges, rounded.
—

off to 5 ri* radius, are adjusted accurately parallel. On both—

sides of the knife edges are adjusting screws, by means of which the
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\

. .

—

ends of the tube may be adjusted laterally with reference to the

knife edges, thereby avoiding the turning of the tube shout its

axis, as well as permanent deflections. In the experiments, tests

were made upon the strut, a steel tube of 8 mm. dianeter, 2 mm.

wall”thickness, and.3030 mm. length, with apparent eccentricities

varying:frorn +12 mm. to -2.6 mm. While the calculation gives Euler[E

Tra.xa 150,000 x 37.3buokling load- P = = 8400 kg., it waa found
3032

that the tube could stand a load of 9500 kg. at an eccentricity

e= –2.6 mm. At 9600 kg-, without any ‘increaseof the load, the de-

flection rose immediately from -1.2 mm, to a very high value, that

wmld have led to collapse (See Table 12).

TABLE 12.

Deflections ~a~ in mm. at Various”Eccentricities.
\

Eccen- :
tricity: , Loads in kg.

c::::: ;::::: :
in mm.:1000:2000t30co:4000:5000:WOo: 7000:8000:8500:9000:95UO:96C)0

3.2:2*1: : ‘: : : : ; : : .: :

10 :1.7: : : : :’ : : : : : :

8 :1.4: : : : : : : : : : :

6 :1.1:2.8::::: :::.,::

4 :0~9: 2.4: : : : : : : : : :

2 : 0.5: 1.3: 2.4: 4.0: : : : : : : :

0 : 0.1: 0.3: 0.9: 1.6: 2.7: 4.5: : ‘“: : : :

-2.5 :: 0.0: 0.0: 0.0: “0.0:0.4: 0.1: 0.2: 0.6: : : :

-2.6 : 0.0: 0.0: O*C: 0,0: 0.0: 0.0: 0,0: 0,0:-0.1:-0,3:-l.2:Wck-
ling.
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It follows from these tests that a perfectly strai~ht rod$ b.

agreement with Eulerts theory, does not deflect at all under lcad~

below Eulerts crippling load, and that after their ulti~,ateload ~s

reached, there is an equili’oriumbetween the outer and the inner

forces for any deflection within the elsstio limit of the material,

..
SUMMARY.

The formulas hitherto employed for cslculation of rods subject

tO compression, are usually of value only for stout or for slender

rods. They do not cover, as a rule, the whole range of rod lengths$ .

or they give too great a safety factor for short and moderately

large rods. Therefore, a new empirical formula, equation (8), has

been developed, that holds good for any length and any material of

the ‘rod,and agrees well with the results of extensive strength

tests. To facilitate the calculations, three tables are included,

giving the crippling load for solid and hollow sectioned wooden

rds of different thickness and length, as well as for steel t~es

mnuf actured according to the standards of Army Air Service Ihspec-

tion (Idflz), Further, a graphical method of oalculation of the

“oreaking load is derived (Fig. 4) in whi~h a single curve is employ-

ed for determination of the allowable fiber stress,

Finally, the theory is discussed of the elastic curve for a rod

subject to capress ion, according to which no deflection occurs,

and the apparent centradiution of this conclusion by test results

attributed to the fact that the rods under test are not perfectlyL

is

straight, or that the wall thickness and the material are not uni-
—.
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form. Under the assumption of an eccentric rod,

initial herd according to a sire curve, a simple

having a slight

formula fbr t13

deflection is deri~ed, which shows a surprising agreement with test

results. ~rom this a further formula is derived fOr-ihe dete~i-

nazion of the allowable load on an eccentric rod. Tae resulting

t relations are made clearer by means’of a graphical representation

of the relation of the moments of the outer and inner forces (Fig.

7) to the deflection, and tnrough the determination of equilibriw~

between moments.

Translated by l?.Y’.Pa.wlowski,
University of Michigan.*
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